Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.989
Filter
1.
Rapid Commun Mass Spectrom ; 38(14): e9761, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38714820

ABSTRACT

RATIONALE: Himalayan marmot oil (SPO) has been used for pharmaceutical purposes for centuries, but its composition is still unclear. The bioactivity of SPO highly depends on the techniques used for its processing. This study focused on the comprehensive lipidomics of SPO, especially on the ones derived from dry rendering, wet rendering, cold pressing, and ultrasound-assisted solvent extraction. METHODS: We performed lipid profiling of SPO acquired by different extraction methods using ultrahigh-performance liquid chromatography Q-Exactive Orbitrap mass spectrometry, and 17 classes of lipids (2 BMPs, 12 LysoPCs, 9 LysoPEs, 41 PCs, 24 PEs, 23 Plasmenyl-PCs, 10 Plasmenyl-PEs, 10 MGs, 63 DGs, 187 TGs, 2 MGDGs, 3 Cer[NDS]s, 22 Cer[NS]s, 2 GlcCer[NS]s, 14 SMs, 14 CEs, and 6 AcylCarnitines) were characterized. RESULTS: Fifty-five lipids were differentially altered (VIP > 1.5, p < 0.05) between the extraction techniques, which can be used as potential biomarkers to differentiate SPO extracted by various methods. Additionally, the contents of oleic acid and arachidic acid were abundant in all samples that may suggest their medicinal values and are conducive to in-depth research. CONCLUSIONS: These findings reveal the alterations of lipid profile and free fatty acid composition in SPO obtained with different extraction methods, providing a theoretical foundation for investigating its important components as functional factors in medicines and cosmetics.


Subject(s)
Lipids , Marmota , Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Lipids/chemistry , Lipids/analysis , Mass Spectrometry/methods , Plant Oils/chemistry , Plant Oils/analysis , Lipidomics/methods , Chemical Fractionation/methods
2.
J Oleo Sci ; 73(5): 665-674, 2024.
Article in English | MEDLINE | ID: mdl-38692890

ABSTRACT

Sacha inchi seed oil is a food matrix rich in bioactive constituents, mainly polyunsaturated fatty acids. In this study, the characteristics of color, carotenoid content, tocopherols, and volatile aroma compounds in eight sacha inchi seed (Plukenetia volubilis L.) oil accessions were evaluated. Results showed that the oil obtained from the accessions presented a lightness and chroma of 91 to 98 units and 6 to 10 units respectively, while the hue angle ranged between 93 to 97 units. The total carotenoid content in the different accessions ranged from 0.6 to 1.5 mg/kg, while γ- and δ-tocopherol ranged from 861.6 to 1142 mg/kg and 587 to 717.1 mg/kg. In addition, the total content of tocopherols varied between 1450 and 1856 mg/kg and the δ/γ ratio ranged between 0.58 and 0.70. The oils from the accessions PER000408 (861 µg/kg) and PER000411 (896 µg/kg) were those with the higher volatile concentration, especially 1-hepten-3-ol, 2-nonanol, (E)-3-hexen- 1-ol, (E)-2-hexenal, and 1-hexanol. In this study, the variability of the oil obtained from 8 accessions were observed, from which promising accessions can be selected for continuous investigations of the new sacha inchi seed genotypes.


Subject(s)
Carotenoids , Plant Oils , Seeds , Tocopherols , Volatile Organic Compounds , Carotenoids/analysis , Tocopherols/analysis , Seeds/chemistry , Volatile Organic Compounds/analysis , Plant Oils/analysis , Plant Oils/chemistry , Brassicaceae/chemistry
3.
Molecules ; 29(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731554

ABSTRACT

BACKGROUND: Fatty acids are essential for human health. Currently, there is a search for alternative sources of fatty acids that could supplement such sources as staple crops or fishes. Turions of aquatic plants accumulate a variety of substances such as starch, free sugars, amino acids, reserve proteins and lipids. Our aim is to see if turions can be a valuable source of fatty acids. METHODS: Overwintering shoots and turions of aquatic carnivorous plants were collected. The plant material was extracted with hexane. The oils were analyzed using a gas chromatograph with mass spectrometer. RESULTS: The dominant compound in all samples was linolenic acid. The oil content was different in turions and shoots. The oil content of the shoots was higher than that of the turions, but the proportion of fatty acids in the oils from the shoots was low in contrast to the oils from the turions. The turions of Utricularia species were shown to be composed of about 50% fatty acids. CONCLUSIONS: The turions of Utricularia species can be used to obtain oil with unsaturated fatty acids. In addition, the high fatty acid content of turions may explain their ability to survive at low temperatures.


Subject(s)
Fatty Acids , Plant Shoots , Fatty Acids/analysis , Plant Shoots/chemistry , Gas Chromatography-Mass Spectrometry , alpha-Linolenic Acid/analysis , Plant Oils/chemistry , Plant Oils/analysis
4.
Pak J Biol Sci ; 27(3): 160-167, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38686738

ABSTRACT

<b>Background and Objective:</b> White turmeric essential oil (WTEO) is known to have high commercial value since it has been used to improve immunological function, increase blood circulation, ease toxin clearance and stimulate digestion. However, there is no standard to regulate the specific characteristics of white turmeric essential oil. Therefore, the objective of this research was to develop an analytical technique for WTEO authentication from vegetable oils, namely palm oil (PO), coconut oil (VCO) and soybean oil (SO), using FTIR spectroscopy and chemometrics, as well as GC-MS spectroscopy. <b>Materials and Methods:</b> The WTEO was obtained by hydrodistillation method. Pure WTEO and vegetable oils were scanned in the MIR region (4000-650 cm<sup>1</sup>) of FTIR spectroscopy and the spectra were further analyzed using chemometrics. <b>Results:</b> The extraction yielded 0.103% v/w WTEO, a dark purple color with a specific pungent odor. Discriminant analysis separated pure WTEO and adulterated WTEO with 100% accuracy at wave numbers 4000-650 cm<sup>1</sup>. The best PLS regressions to quantify SO, VCO, PO and concentration in WTEO were at wave numbers 4000-1100, 1400-1050 and 2100-650 cm<sup>1</sup>, respectively. <b>Conclusion:</b> The FTIR and chemometrics combination effectively authenticates white turmeric essential oil from any possible adulterants, such as vegetable oil.


Subject(s)
Curcuma , Gas Chromatography-Mass Spectrometry , Oils, Volatile , Curcuma/chemistry , Oils, Volatile/analysis , Spectroscopy, Fourier Transform Infrared/methods , Gas Chromatography-Mass Spectrometry/methods , Chemometrics , Plant Oils/analysis , Food Contamination/analysis
5.
Article in English | MEDLINE | ID: mdl-38588664

ABSTRACT

To investigate cannabinoid content and profiles, 16 cannabinoids were quantified in 30 commercial hemp seed edible oils. In addition, one hemp seed oil was subjected to thermal processing up to 200 °C for up to 60 min. UHPLC-MS/MS was used for analysis. The content of cannabinoids in the samples ranged from 9 to 279 mg kg-1 (sum) and for Δ9-tetrahydrocannabinol (Δ9-THC) from 0.2 to 6.7 mg kg-1. Three samples exceeded the EU Δ9-THC equivalent maximum levels of 7.5 mg kg-1 for hemp seed oils. Cannabinoid profiles can provide indications of different product characteristics (e.g. degree of processing, variety of plant material). Furthermore, intense thermal processing (200 °C, 60 min) led to 38% decrease in sum cannabinoid content (sum of all analysed cannabinoids in this study), 99% decrease in cannabinoid acids, and 22% increase in Δ9-THC.


Subject(s)
Cannabinoids , Cannabis , Hot Temperature , Plant Extracts , Plant Oils , Seeds , Cannabis/chemistry , Cannabinoids/analysis , Plant Oils/chemistry , Plant Oils/analysis , Chromatography, High Pressure Liquid , Seeds/chemistry , Tandem Mass Spectrometry , Food Contamination/analysis
6.
J AOAC Int ; 107(3): 443-452, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38430003

ABSTRACT

BACKGROUND: Food allergen cross-contact during food preparation and production is one of the causes of unintentional allergen presence in packaged foods. However, little is known about allergen cross-contact in shared frying or roasting oil, which prevents the establishment of effective allergen controls and may put allergic individuals at risk. To better understand the quantity of allergen transferred to frying oil and subsequent products, an analytical method is needed for quantifying protein in oil that has been exposed to frying/roasting conditions. OBJECTIVE: The goal of this study was to develop a parallel reaction monitoring LC-MS/MS method to quantify the amount of cashew protein in shared roasting oil. METHODS: The sample preparation method was evaluated to improve protein extractability and peptide performance. Four quantitative peptides representing cashew 2S and 11S proteins were selected as targets based on their sensitivity, heat stability, and specificity. A calibration strategy was developed to quantify the amount of total cashew protein in oil. Method performance was evaluated using a heated cashew-in-oil model system. RESULTS: The method showed high recovery in oil samples spiked with 100 or 10 parts per million (ppm) total cashew protein heated at 138 or 166°C for 2-30 min. Samples (100 ppm total cashew protein) heated for 30 min had more than 90% recovery when treated at 138°C and more than 50% when heated at 166°C. CONCLUSION: The method is fit-for-purpose for the analysis of cashew allergen cross-contact in oil. HIGHLIGHTS: A novel MS-based method was developed that can accurately quantify the amount of cashew protein present in heated oil.


Subject(s)
Anacardium , Hot Temperature , Plant Proteins , Tandem Mass Spectrometry , Anacardium/chemistry , Plant Proteins/analysis , Tandem Mass Spectrometry/methods , Plant Oils/chemistry , Plant Oils/analysis , Allergens/analysis , Cooking , Chromatography, Liquid/methods
7.
Article in English | MEDLINE | ID: mdl-38422382

ABSTRACT

Glycidyl esters (GEs) and 3-monochloropropanediol esters (3-MCPDEs) are process contaminants commonly found in refined edible oils which are often added to infant formulas. The Taiwan Food and Drug Administration (TFDA) launched regulations for GEs in infant formulas that went into effect on 1 July 2021. To investigate levels of GEs and 3-MCPDEs in infant formula powder, 45 products were sampled and analysed during 2020-2021. The contents of GEs and 3-MCPDEs in formulas of different brands significantly varied, but their concentrations in all of the formulas complied with European Union (EU) regulations. Infant formulas containing palm oil had significantly higher 3-MCPDE levels in both extracted oils and milk powder than those without palm oil. Concentrations of GEs and 3-MCPDEs in infant formula powder and extracted oils were significantly lower in products from Europe than those from Australia and New Zealand. Infants aged 0-1 years in Taiwan who consumed only infant formula showed a margin of exposure (MoE) exceeding 25,000. Mean consumer exposures to 3-MCPDEs stayed below the tolerable daily intake (TDI), while high exposures at the 95th percentile (P95) exceeded the TDI by 1.7-fold. Herein, we present the changing trends in the risk assessment results of infant formula across various countries in the decade. Implementation of regulations and mitigation strategy effectively reduced the risk of infants being exposed to GEs and 3-MCPDEs through infant formula.


Subject(s)
Infant Formula , Propylene Glycols , alpha-Chlorohydrin , Infant , Humans , Palm Oil , Infant Formula/analysis , alpha-Chlorohydrin/analysis , Esters/analysis , Powders , Taiwan , Food Contamination/analysis , Risk Assessment , Plant Oils/analysis
8.
Genes (Basel) ; 15(2)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38397163

ABSTRACT

Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor ß1 (TGF-ß1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFßR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.


Subject(s)
Aldehydes , Cyclopentane Monoterpenes , Phenols , Phenylethyl Alcohol/analogs & derivatives , Plant Oils , Vascular Endothelial Growth Factor A , Humans , Olive Oil/pharmacology , Plant Oils/analysis , Biomarkers , Antigens, Differentiation , Cell Proliferation , Fibroblasts , Gene Expression
9.
Food Chem ; 443: 138555, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38281417

ABSTRACT

The standard method used to quantify free acidity (FA) in vegetable oil is neutralization titration, which requires many toxic chemicals and depends on an analyst's experience in detecting endpoints. Here, a digital image colorimetry (DIC) method using a smartphone camera was developed to measure FA in vegetable oils. A cupric acetate solution was used to produce the colorimetric reaction. The coloured solutions were imaged, and R values (from the RGB colour system) were calibrated against the respective FAs in the standards. The FA values of the samples were determined by standard addition calibration. These results were compared to measurements of FA obtained by the standard titrimetric method. An excellent correlation was obtained, with an R2 of 0.98 and a mean absolute error of 0.06%. The chemicals needed for analysis were reduced by approximately 90%. Thus, DIC is a less subjective and more economical method for determining FA in vegetable oils.


Subject(s)
Colorimetry , Plant Oils , Plant Oils/analysis , Colorimetry/methods , Vegetables , Smartphone
10.
Anal Chem ; 96(4): 1803-1811, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38243913

ABSTRACT

Olive oil is a prominent agricultural product which, in addition to its nutritional value and unique organoleptic characteristics, offers a variety of health benefits protecting against cardiovascular disease, cancer, and neurodegenerative diseases. The assessment of olive oil authenticity is an extremely important and challenging process aimed at protecting consumers and producers. The most frequent adulteration involves blending with less expensive and readily available vegetable/seed oils. The methods for adulteration detection, whether based on changes in metabolite profiles or based on DNA markers, require advanced and expensive instrumentation combined with powerful chemometric and statistical tools. To this end, we present a simple, multiplex, and inexpensive screening method based on the development of a multispecies DNA sensor for sample interrogation with the naked eye. It is the first report of a DNA sensor for olive oil adulteration detection with other plant oils. The sensor meets the 2-fold challenge of adulteration detection, i.e., determining whether the olive oil sample is adulterated and identifying the added vegetable oil. We have identified unique, nucleotide variations, which enable the discrimination of seven plant species (olive, corn, sesame, soy, sunflower, almond, and hazelnut). Following a single PCR step, a 20 min multiplex plant-discrimination reaction is performed, and the products are applied directly to the sensing device. The plant species are visualized as red spots using functionalized gold nanoparticles as reporters. The spot position reveals the identity of the plant species. As low as <5-10% of adulterant was detected with particularly good reproducibility and specificity.


Subject(s)
Metal Nanoparticles , Plant Oils , Plant Oils/analysis , Olive Oil/analysis , Reproducibility of Results , Gold/analysis , DNA , Food Contamination/analysis
11.
Plant Foods Hum Nutr ; 79(1): 151-158, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38231454

ABSTRACT

Amaranth, quinoa, and buckwheat are the representatives of pseudocereals, different parts and by-products of which are used in daily nutrition and food processing industry. However, only scarce information exists on the bioactivity of their oils. Thus, oils obtained from amaranth, buckwheat, and red, yellow, and white quinoa seeds were evaluated in terms of their nutritional (fatty acid profile, squalene), cytotoxic (against normal and neoplastic gastrointestinal, prostate, and skin cells), anti-inflammatory and antiradical (interleukin 6, TNF-alpha, nitric oxide, DPPH, Total phenolics, and superoxide dismutase) potential in the in vitro model. Linoleic (42.9-52.5%) and oleic (22.5-31.1%) acids were the two main unsaturated, while palmitic acid (4.9-18.6%) was the major saturated fatty acid in all evaluated oils. Squalene was identified in all evaluated oils with the highest content in amaranth oil (7.6 g/100 g), and the lowest in buckwheat oil (2.1 g/100 g). The evaluated oils exerted a high direct cytotoxic impact on cancer cells of different origins, but also revealed anti-inflammatory and antiradical potentials. Yellow quinoa oil was the most active, especially toward skin (A375; IC50 6.3 µg/mL), gastrointestinal (HT29 IC50 4.9 µg/mL), and prostate cancer cells (LNCaP IC50 7.6 µg/mL). The observed differences in the activity between the oils from the tested quinoa varieties deserve further studies. High selectivity of the oils was noted, which indicates their safety to normal cells. The obtained results indicate that the oils are good candidates for functional foods with perspective chemopreventive potential.


Subject(s)
Seeds , Squalene , Squalene/analysis , Spectroscopy, Fourier Transform Infrared , Seeds/chemistry , Fatty Acids/analysis , Plant Oils/analysis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis
12.
BMC Genomics ; 25(1): 29, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172664

ABSTRACT

BACKGROUND: Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS: In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION: Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.


Subject(s)
Brassicaceae , Plant Breeding , Humans , Gene Expression Profiling , Brassicaceae/genetics , Brassicaceae/metabolism , Seeds/metabolism , Fatty Acids/metabolism , Plant Oils/analysis , Gene Expression Regulation, Plant
13.
Food Res Int ; 176: 113839, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163731

ABSTRACT

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin like polychlorinated biphenyls (dl-PCBs) levels were measured in representative vegetable oils and animal origin foodstuffs collected in a Total Diet Study carried out in the Valencian Region (Spain). A total amount of 3,300 food samples were collected and grouped into 5 main food groups: vegetable oils, meat and meat products, eggs, milk and dairy products and fish and sea products. The samples were analysed using gas chromatography coupled to high-resolution mass spectrometry (GC-HRMS). The food group which presented the highest concentration in wet weight (ww) for the sum of PCDD/Fs and dl-PCBs was fish and sea products (0.5 pg TEQ g-1 ww), whereas meat and meat products (0.6 pg TEQ g-1 lipid) showed the highest levels expressed in lipid terms. Occurrence data of PCDD/F and dl-PCBs were combined with consumption data to estimate the dietary exposure of adults (>15 years) and children (6-15 years). Finally, the estimated weekly intake (EWI) was calculated using a deterministic approach and considering the food consumption of the population, with fish and sea products being the main food group contributor. Likewise, considering the worst-case scenario (Upper Bound, UB), average EWI were 1.8 and 3.4 pg TEQ kg-1 body weight (bw) week-1 for adults and children, respectively. For children, the average EWI was almost twice above the tolerable weekly intake (TWI) of 2 pg TEQ kg-1 bw week-1 set by EFSA in 2018. In terms of risk characterisation, the overall obtained results showed that 19 % of adults and 43 % of children may exceed the TWI when using UB.


Subject(s)
Dioxins , Environmental Pollutants , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Adult , Child , Animals , Humans , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Dioxins/analysis , Dioxins/chemistry , Dibenzofurans/analysis , Environmental Pollutants/analysis , Dietary Exposure/analysis , Spain , Food Contamination/analysis , Milk/chemistry , Risk Assessment , Fishes , Plant Oils/analysis , Lipids/analysis
14.
BMC Public Health ; 24(1): 218, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238752

ABSTRACT

In this study, potential toxic element (PTEs) including lead (Pb), arsenic (As), cadmium(Cd), iron (Fe) and zinc (Zn) in traditional and industrial edible vegetable oils (peanut, sunflower, olive and sesame) collected from Hamadan, west of Iran were determined using Inductivity Coupled Plasma Optical Emission Spectrometry (ICP-OES). Besides, probabilistic health risk assessment (non-carcinogenic and carcinogenic risks) was identified via total target hazard quotient (TTHQ) and cancer risk (CR) by the Monte Carlo Simulation (MCS) model. The ranking of concentration PTEs in traditional and industrial edible vegetable oils was Fe > Zn > As > Pb > Cd. The in all samples, content of PTEs in industrial oils were upper than traditional oils (p < 0.001). The level of PTEs in most of vegetable oils was lower than permissible concentration regulated by Codex and national standard. In term of non-carcinogenic, consumers were at acceptable range (TTHQ < 1) due to ingestion both traditional and industrial vegetable oils content of PTEs. In term of carcinogenic, CR the both adults and children was higher than acceptable range (CR < 1E-6), Hence consumer are at unacceptable risk due to ingestion industrial vegetable oils content of inorganic As. Therefore, it is recommended to implement control plans for PTEs in vegetable oils consumed in Hamadan, Iran.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Adult , Child , Humans , Cadmium/toxicity , Cadmium/analysis , Plant Oils/analysis , Plant Oils/chemistry , Vegetables , Iran , Lead/analysis , Arsenic/toxicity , Arsenic/analysis , Zinc , Carcinogens , Risk Assessment , Metals, Heavy/analysis , Environmental Monitoring/methods , Soil Pollutants/analysis
15.
Talanta ; 269: 125411, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38008023

ABSTRACT

The composition of essential oils varies according to culture conditions and climate, which induces a need for simple and inexpensive characterization methods close to the place of extraction. This appears particularly important for developing countries. Herein, we develop an analytical strategy to determine the thymol content in Ocimum Gratissimum, a medicinal plant from Benin. The protocol is based on electrochemical techniques (cyclic and square wave voltammetry) implemented with a low cost potentiostat. Thymol is a phenol derivative and was directly oxidized at the electrode surface. We had to resort to submillimolar concentrations (25-300 µM) in order to minimize production of phenol oligomers that passivate the electrode. We worked first on two essential oils and realized that in one of them the thymol concentration was below our detection method. These results were confirmed by gas chromatography - mass spectrometry. Furthermore, we optimized the detection protocol to analyze an infusion made directly from the leaves of the plant. Finally, we studied whether the cost of the electrochemical cell may also be minimized by using pencil lead as working and counter electrodes.


Subject(s)
Ocimum , Oils, Volatile , Plants, Medicinal , Thymol/analysis , Ocimum/chemistry , Oils, Volatile/chemistry , Plant Leaves/chemistry , Phenols/analysis , Plant Oils/analysis
16.
Talanta ; 270: 125513, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38128278

ABSTRACT

Acrolein is a toxic volatile compound derived from oxidative processes, that can be formed in foods during storage and cooking. This study employs proton transfer reaction mass spectrometry (PTR-MS) to detect acrolein precursors in vegetable oils by focusing on the m/z (mass-to-charge ratio) 57. To this purpose, hempseed, sesame, walnut, olive and linseed oils were stored for 168 h at 60 °C in presence of 2,2'-azobis(2-metilpropionitrile) (3 mM) radicals initiator. The evolution of m/z 57 by PTR-MS was also compared with traditional lipid oxidation indicators such as peroxide value, conjugated diene, oxygen consumption and, isothermal calorimetry. The obtained results were explained by the fatty acid composition and antioxidant capacity of the oils. Hempseed fresh oil presented a very low total volatile organic compounds (VOCs) intensity (5.6 kncps). Nonetheless, after storage the intensity increased ∼70 times. A principal component analysis (PCA) confirmed the potential of m/z 57 to differentiate fresh versus rancid hempseed oil sample. During an autoxidation experiment oils high in linolenic and linoleic acids showed higher m/z 57 emissions and shorter induction times: linseed oil (38 h) > walnut oil (47 h) > hempseed oil (80 h). The m/z 57 emission presented a high correlation coefficient with the total VOC signal (r > 0.95), conjugated dienes and headspace oxygen consumption. A PCA analysis showed a complete separation of the fresh oils on the first component (most significant) with the exception of olive oil. Walnut, hempseed and linseed oil were placed on the extreme right nearby total VOCs and m/z 57. The results obtained highlight the potential of PTR-MS for the early detection of oil autoxidation, serving as a quality control tool for potential acrolein precursor emissions, thereby enhancing food safety in the industry.


Subject(s)
Plant Oils , Volatile Organic Compounds , Plant Oils/analysis , Acrolein , Protons , Linseed Oil , Mass Spectrometry , Volatile Organic Compounds/analysis
17.
Food Chem ; 440: 138255, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38150904

ABSTRACT

This study focuses on the fate of chlordecone (CLD) during cooking processes. Neat CLD was subjected to thermogravimetric analysis, which revealed that the vast majority of the compound (79 %) was vaporised at temperatures between 55 and 245 °C. In order to monitor the behaviour of CLD during cooking processes, a QuEChERS extraction protocol was optimised for vegetable cooking oil and a heating kinetics experiment was conducted at 195 °C on CLD-spiked cooking oil. The results showed a strong decrease in CLD over time and, for the first time to our knowledge, transformation of CLD into chlordecol. Finally, a comparison was conducted between the cooking of uncured pork with and without vegetable oil. The use of vegetable oil led to a significant decrease in CLD content, but revealed that a fraction of the CLD transferred into the cooking oil. This study provides data that shed light on the fate of CLD during cooking.


Subject(s)
Chlordecone , Insecticides , Soil Pollutants , Chlordecone/analysis , Insecticides/analysis , Soil Pollutants/analysis , Cooking , Plant Oils/analysis
18.
Molecules ; 28(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138450

ABSTRACT

The adulteration of olive oil is a crucial matter for food safety authorities, global organizations, and consumers. To guarantee olive oil authenticity, the European Union (EU) has promoted the labeling of olive oils with the indices of Protected Designation of Origin (PDO) and Protected Geographical Identification (PGI), while food security agencies are also interested in newly emerging technologies capable of operating reliably, fast, and in real-time, either in situ or remotely, for quality control. Among the proposed methods, photonic technologies appear to be suitable and promising for dealing with this issue. In this regard, a laser-based technique, namely, Laser-Induced Breakdown Spectroscopy (LIBS), assisted via machine learning tools, is proposed for the real-time detection of olive oil adulteration with lower-quality oils (i.e., pomace, soybean, sunflower, and corn oils). The results of the present work demonstrate the high efficiency and potential of the LIBS technique for the rapid detection of olive oil adulteration and the detection of adulterants.


Subject(s)
Food Contamination , Food Safety , Olive Oil/chemistry , Spectrum Analysis/methods , Food Contamination/analysis , Lasers , Plant Oils/analysis
19.
Theor Appl Genet ; 136(12): 256, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010528

ABSTRACT

KEY MESSAGE: By integrating QTL fine mapping and transcriptomics, a candidate gene responsible for oil content in rapeseed was identified. The gene is anticipated to primarily function in photosynthesis and photosystem metabolism pathways. Brassica napus is one of the most important oil crops in the world, and enhancing seed oil content is an important goal in its genetic improvement. However, the underlying genetic basis for the important trait remains poorly understood in this crop. We previously identified a major locus, OILA5 responsible for seed oil content on chromosome A5 through genome-wide association study. To better understand the genetics of the QTL, we performed fine mapping of OILA5 with a double haploid population and a BC3F2 segregation population consisting of 6227 individuals. We narrowed down the QTL to an approximate 43 kb region with twelve annotated genes, flanked by markers ZDM389 and ZDM337. To unveil the potential candidate gene responsible for OILA5, we integrated fine mapping data with transcriptome profiling using high and low oil content near-isogenic lines. Among the candidate genes, BnaA05G0439400ZS was identified with high expression levels in both seed and silique tissues. This gene exhibited homology with AT3G09840 in Arabidopsis that was annotated as cell division cycle 48. We designed a site-specific marker based on resequencing data and confirmed its effectiveness in both natural and segregating populations. Our comprehensive results provide valuable genetic information not only enhancing our understanding of the genetic control of seed oil content but also novel germplasm for advancing high seed oil content breeding in B. napus and other oil crops.


Subject(s)
Brassica napus , Humans , Brassica napus/genetics , Brassica napus/metabolism , Quantitative Trait Loci , Genome-Wide Association Study , Plant Breeding , Seeds/chemistry , Plant Oils/analysis
20.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836721

ABSTRACT

Brazil nut oil is highly valued in the food, cosmetic, chemical, and pharmaceutical industries, as well as other sectors of the economy. This work aims to use the Fourier transform infrared (FTIR) technique associated with partial least squares regression (PLSR) and principal component analysis (PCA) to demonstrate that these methods can be used in a prior and rapid analysis in quality control. Natural oils were extracted and stored for chemical analysis. PCA presented two groups regarding the state of degradation, subdivided into super-degraded and partially degraded groups in 99.88% of the explained variance. The applied PLS reported an acidity index (AI) prediction model with root mean square error of calibration (RMSEC) = 1.8564, root mean square error of cross-validation (REMSECV) = 4.2641, root mean square error of prediction (RMSEP) = 2.1491, R2cal (calibration correlation coefficient) equal to 0.9679, R2val (validation correlation coefficient) equal to 0.8474, and R2pred (prediction correlation coefficient) equal to 0, 8468. The peroxide index (PI) prediction model showed RMSEC = 0.0005, REMSECV = 0.0016, RMSEP = 0.00079, calibration R2 equal to 0.9670, cross-validation R2 equal to 0.7149, and R2 of prediction equal to 0.9099. The physical-chemical analyses identified that five samples fit in the food sector and the others fit in other sectors of the economy. In this way, the preliminary monitoring of the state of degradation was reported, and the prediction models of the peroxide and acidity indexes in Brazil nut oil for quality control were determined.


Subject(s)
Bertholletia , Spectroscopy, Fourier Transform Infrared/methods , Chemometrics , Plant Oils/analysis , Least-Squares Analysis , Peroxides
SELECTION OF CITATIONS
SEARCH DETAIL
...